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1 Introductory remarks

The aim of this article is to give a brief overview over the topic of quantum chemical calculations
on lanthanide systems. First, a small introduction is given on the basics of quantum chemical cal-
culations. Afterwards, different calculations on lanthanide systems are discussed. More information
on how to actually perform calculations with Turbomole can be found in the manual.[1]

2 Basics of Quantum Chemistry

2.1 Schrödinger equation

The central equation in most of quantum chemistry is the time independent Schrödinger equa-
tion[2],[3]

ĤΨ = EΨ , (1)

where the Hamilton operator Ĥ collects operators of all relevant energy contributions of the system.
The wave function Ψ describes the state of said system with the respective energy E. For most
systems, several distinct pairs of Ψ and E are valid solutions to the Schrödinger equation with a
given Hamilton operator. In the special case of the electronic Schrödinger equation in the context of
molecules in quantum chemistry, the solution with the lowest energy E gives the electronic ground
state. All other solutions represent excited electronic states respectively.

2.2 Molecules within the Born–Oppenheimer approximation

When applying the Schrödinger equation to molecular systems, the Born–Oppenheimer (BO) ap-
proximation[4] is employed in the vast majority of cases. Here, the atomic nuclei are described as
being fixed in space and are usually assumed to be point charges. For a given arrangement of nuclei,
only the electrons are treated in a quantum mechanical manner. The use of the Born–Oppenheimer
approximation can be justified by examining the time scales of the movement of nuclei and electrons.
Electrons are much lighter than atomic nuclei (a proton is approximately 1800 times heavier than
an electron[5]). Thus, nuclei typically move much slower than electrons and can therefore be treated
as stationary.

Now the electronic Hamilton operator can be set up by collecting different energy contributions
of kinetic energies and potential energies. A molecular system consists of positively charged nuclei
and negatively charged electrons. The kinetic energy of the nuclei is omitted withing the BO
approximation since they are stationary. The kinetic energy of the electrons is given by the respective
operator T̂e. Potential energy contributions arise from the Coulomb interaction of the charged
particles, the two repulsive interactions of nuclei–nuclei and electrons–electrons, V̂nn and V̂ee, and
the attractive interaction of nuclei–electrons T̂ne. The full Hamilton operator is thus given as

Ĥ = T̂e + V̂ne + V̂ee + V̂nn . (2)
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The Coulomb interaction between nuclei V̂nn is just a constant value within the BO approximation
and is therefore sometimes omitted in the electronic Hamilton operator and added to the total energy
later.

2.3 Hartree–Fock theory

In the previous section an expression for the Hamilton operator was established. We will now look
at one of several approaches to construct the electronic wavefunction Ψ.

The electronic wave function Ψ describes all N electrons contained in the system, meaning it is
dependent on all electronic coordinates:

Ψ(x1,x2, . . . ,xN ) (3)

It is convenient to construct Ψ by using N one-particle wave functions ϕi(x) that each only depend
on one electronic spin coordinate. These one-particle wave functions are know as molecular orbitals
(MOs). A naive approach to construct the total wave function would be to use a simple product of
molecular orbitals.

Ψ(x1,x2, . . . ,xN ) = ϕ1(x1) · ϕ2(x2) · · · · · ϕN (xN ) (4)

Here, electron 1 would be located in MO 1, electron 2 in MO 2 and so on. This approach is known
as a Hartree-product and is not applicable to electrons. Electrons are fermions and therefore need
to obey the Pauli exclusion principle. This means that the wave function needs to undergo a change
in sign when interchanging any two electronic coordinates, e.g.

Ψ(x1,x2,x3,x4, . . . ,xN ) = −Ψ(x4,x2,x3,x1, . . . ,xN ) . (5)

It can clearly be seen that the wave function in eq. (4) does not meet this requirement. The required
change in sign can be obtained by the use of a Slater Determinant[6]

ΨSD =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)

∣∣∣∣∣∣∣∣∣ . (6)

For example, in the special case of a two-electron system one obtains

ΨSD(x1,x2) =
1√
2

(
ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)

)
, (7)

which naturally obeys the Pauli principle:[7]

ΨSD(x2, r1) =
1√
2

(
ϕ1(x2)ϕ2(x1)− ϕ1(x1)ϕ2(x2)

)
(8)

= − 1√
2

(
ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)

)
(9)

= −ΨSD(x1,x2) . (10)

Plugging the Slater determinant and the Hamilton operator from the previous chapter into the
Schrödinger equation, one eventually ends up at the Hartree–Fock equations[8],[9]

F̂ ϕi = ϵiϕi . (11)

Where the Fock operator F̂ consists of the kinetic energy operator of the electron, the nuclear-
electron attraction and the Coulomb and Exchange interaction with the other electrons:

F̂ = −1

2
∆ + V̂Ne + Ĵ − K̂ . (12)
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This represents a set of coupled equations, one equation per molecular orbital. Here, each electron
is treated in the mean field of all other electrons. This necessitates an iterative process to solve the
equations: First, an initial set of molecular orbitals is obtained by some sort of educated guess. Then,
the Hartree–Fock equations are solved using the mean field of the previously generated molecular
orbitals to obtain a new set of MOs. This step is repeated until convergence is reached. The
procedure outlined here is called the self-consistent field (SCF) procedure.

The molecular orbitals ϕi(x) are usually expanded in a linear combination of atomic orbitals
(LCAO).[9],[10] Here, a basis set consisting of different atomic orbitals χµ(x) are chosen for the
calculation and the expansion coefficients ciµ are optimized during the SCF procedure:

ϕi(x) =
∑
µ

ciµχµ(x) , (13)

where the sum runs over all atomic orbitals.

2.4 Density functional theory

A major weakness of the Hartree-Fock method is the neglect of electron-correlation effects. Since
electrons are only treated in the mean field of all other electrons within the Hartree-Fock theory,
the mean distances between then are usually too small and therefore the Coulomb repulsion is too
big. In reality one electron would try to prevent being in the vicinity of another electron and vice
versa and their movement would therefore be correlated.

One strategy to incorporate electron correlation is the density functional theory (DFT). The
underlying idea of the DFT is to describe the energy of the system as a functional of the density
E[ρ] instead of a functional of the wave function E[Ψ] like in Hartree–Fock theory. The Hohenberg–
Kohn theorem provides the theoretical foundation to know that there exists a functional that gives
the exact energy of the system. The exact form of said functional is not know and is therefore
approximated in practical calculations. Currently, there is no satisfactory approximation to the
kinetic energy functional. To tackle this problem, Kohn and Sham reformulated the DFT and
reintroduced orbitals. This makes it possible to calculated the kinetic energy exactly, like in Hartree-
Fock theory. In the Kohn–Sham density functional theory[11] (KSDFT) only the exchange and
correlation energies are calculated as a functional of the density. There exists a plethora of different
approximations to this exchange-correlation (xc) functional with different levels of sophistication.

2.4.1 DFT functional classes

There are a few different classes of DFT functionals, this section gives a quick overview of the
respective approaches. For detailed instructions and practical advice regarding functionals, common
approximations and additional corrections for DFT calculations using Turbomole, please consult
chapter 6 of the manual.[1] The interested reader is referred to textbooks like reference [10]. There
are many benchmark studies that compare different functionals in different chemical contexts. For
example extensive studies exist for excitation energies using DFT like references [12] or [13].

LDA, GGA and mGGA

The energy functional E[ρ] formally is only dependent on the value of the density ρ itself. Within
the Local density approximations (LDA), the approximate functional for practical DFT calculations
is also only dependent on the density ρ. Analytical expressions for the correlation and exchange
energy of the homogeneous electron gas are known and fall under this category. The offer a very
crude approximation for molecular systems as they assume a constant (or at the very least slowly
varying) electron density, which is not the case in most molecules.
The general gradient approximation (GGA) makes use of the first derivative of the density ∇ρ in
addition to the density ρ itself. The functional can be written as EGGA[ρ,∇ρ].
In addition to the first derivative of the density, also the second derivative might be considered.
Such functionals fall into the meta-GGA (mGGA) class, EmGGA[ρ,∇ρ, τ ]. Here, τ = ∇ρ · ∇ρ is
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the kinetic energy density. Alternatively, the true Laplacian of the density ∇2ρ = ∆ρ may be used,
which is numerically harder to handle that the kinetic energy density, which is why τ is used more
widely. Within the growing degree of sophistication of LDAs, GGAs and mGGAs, mGGAs generally
offer the best description of the exchange correlation energy of molecular systems.
There is no significant increase in computational cost between LDAs, GGAs and mGGAs. The
most time consuming step is still the computation of the electron–electron Coulomb interaction, the
exchange interaction is now much cheaper as it is also calculated as a functional of the density. If
further approximations are used to the Coulomb interaction, a DFT calculation using the functionals
presented in this subsection is much cheaper than a respective Hartree–Fock calculation, while
generally providing much better results due to the inclusion of electron correlation effects.

Hybrid functionals

One of the biggest sources of errors remaining for LDA, GGA and mGGA functionals is the self-
interaction error of the electrons.[10] In Hartree–Fock theory, Coulomb and exchange interactions
of an electron with itself exactly cancel each other, which is the correct physical behavior, as the
electron does not interact with itself. The DFT functionals of the previous subsection approximate
the exchange interaction as a functional of the density and thus Coulomb and exchange no longer
cancel each other completely for one electron. This introduces the so called self-interaction error. To
combat this, hybrid functionals include a certain amount of exact Hartree–Fock exchange with the
goal of minimizing the self-interaction. Conventional hybrid functionals such as B3LYP or PBE0
always use a fixed amount of Hartree–Fock exchange. There are more advanced types of hybrid
functionals such as range-seperated hybrid functionals of local hybrid functionals that use different
amounts of Hartree–Fock exchange, based on different heuristics.

2.5 Relativistic effects

For heavy elements like rare-earth elements relativistic effects become important. In comparison with
a non-relativistic framework the s- and p-orbitals are more contracted and possess a lower energy.
Because of the stronger shielding of the effective core potential the d- and f-levels get destabilized
and expanded.[14] There are two types of relativistic effects: scalar relativistic effects and spin–orbit
coupling. Scalar relativistic effects only shifts the energy levels while spin-orbit coupling causes a
splitting of degenerated energy levels. Scalar relativistic effects can be employed in a one-component
framework, for describing spin–orbit coupling we need two-components with complex spinors instead
of one-component orbitals.
For relativistic effects we need an equation for quantum mechanic effects which also fullfills the special
relativity theory and is invariant under a Lorentz transformation. The Schrödinger equation does
not fullfill these requirements. So we need another equation, the Dirac equation. In the following
the Dirac equation for a free particle is used. If we want to use the Dirac equation for a molecule a
potential has to be added.

ih̄
∂ΨD(r, t)

∂t
= [−ih̄cα⃗∇⃗+ βmc2]ΨD(r, t) (14)

The ΨD is the Dirac wave function, m is the mass of the free particle and c is in this case the speed
of light. ∇⃗ is the Nabla operator. It is a vector operator whose components are the partial derivative
operators. The operators αi and β are 4x4 matrices.

αi =


0 0
0 0

σi

σi
0 0
0 0

 , β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (15)

These matrices include the Pauli matrices σi

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(16)
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Because of the fourdimensional structure of αi and β the wave function has to have four-components,
forming a so called Dirac spinor.

ΨD(r, t) =


Ψ1(r, t)
Ψ2(r, t)
Ψ3(r, t)
Ψ4(r, t)

 (17)

For a few calculations we need to use these four-components. These consist of two positron compo-
nents and two electron components. In chemistry we are only interested in electronic contributions.
Therefore, the components can be decoupled with different methods.
For example we can use the X2C approach were only the one-electron part is decoupled. Therefore,
we need the one-electron Dirac equation in the finite basis set expansion. This includes electronic
and positronic states but we are only interested in the electronic ones. To get a two-component
electrons-only equation, we have to diagonalize the one-electron Dirac matrix. For that, we perform
a unitary transformation of the Dirac Hamiltonian with the unitary matrix U.

U =


1 0
0 1

−X†

X
1 0
0 1


 R

0 0
0 0(

0 0
0 0

)
R’

 (18)

Here, X is the decoupling matrix and R and R’ are renormalization matrices.[15]

To perform calculations with the X2C approach we have to use the x2c basis sets. These are
optimized for this approach. More information about how to perform such calculations with TUR-
BOMOLE and relativistic in general can be found in the manual in chapter 6.4.[1]

2.6 Relativistic effective core potentials (ECP)

As described earlier, relativistic effects like scalar relativistic effects and spin-orbit coupling need
to be considered for heavy elements like the lanthanides. Instead of considering all electrons like
the all-electron method X2C, one can use so called effective core potentials (in short ECPs) for the
electronic description of the lanthanides. An ECP describes the inner electrons with a potential and
only the most outer electrons are considered explicitly in the calculation. This basically reduces the
Hamilton operator from an all-electron operator to a so called valence-only Hamiltonian

Ĥv =

nv∑
i

hv(i) +

nv∑
i<j

gv(i, j) + Vcc + Vcpp (19)

in which c and v are core and valence contributions, hv(i) and gv(i, j) are the respective one- and
two-electron operators of the valence electrons while Vcc and Vcpp describe Coulomb repulsion and
the core polarization potential of all cores and their nuclei. This equation already shows that it is
possible to exclude certain parts of the working equations with the usage of an ECP which leads
to computational savings. Scalar relativistic effects can be included via the one- and two-electron
operators

hv(i) = −1

2
∆i + Vcv(i) and gv(i, j) =

1

rij
, (20)

more specifically by parametrization of the effective core potential Vcv of the one-electron operator
which describes the interaction of a valence electron with the nuclei of the regarded system. There
are two different types of ECPs which are called small-core or large-core ECPs. They only differ in
the amount of electrons covered by the potential.
In Section 3 of this article, scalar relativistic large-core ECPs of Wood-Boring type developed by
Dolg et al.[16] were used which include not only the most inner electrons but also the f electrons in
the ECP. This is a very, if not the most important, aspect for lanthanides due to their high number
of unpaired electrons which leads to strong convergence problems. Because each lanthanide usually
has a different number of f electrons, one has to use a different ECP for each different f occupation,
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labeled as fn, fn−1 or fn−2 in the following. As a project of this CRC, we optimized error-consistent
basis sets[17] for the usage in conjunction with large-core ECPs from Dolg et al. similar to the def2
series.[18] For a more detailled insight into effective core potentials we refer to the work of Dolg,
especially his overview article of ECPs.[19]

3 DFT calculations on Lanthanides in practice

3.1 Atoms

The ground state of the majority of Ln atoms is fns2, e.g. f14s2 for Yb or f7s2 for Eu. Exceptions
are Ce, Gd and Lu, which exhibit (fn−1s2d1) ground states (f1s2d1, f7s2d1, f14s2d1), as well as
La itself (f0s2d1). These preferences are reproduced only by a few quantum chemical methods, as
demonstrated in the following atomic calculations. For adjusting the occupation of the f shell, we
choose Ci symmetry. Here, the f (and p) orbitals transform as au and the s (and d) orbitals) transform
as ag. In Table 1 the occupations for fns2 and fn−1s2d1 are shown, and the energy difference between
the two states, ∆ = E(fn−1s2d1) − E(fns2), as obtained with scalar X2C[20] employing the finite
nucleus model and x2c-TZVPall basis sets[21] with the pure DFT functionals PBE as well as with
the hybrid functional PBE0 (for practical hints see end of this section).

Table 1: Occupation in Ci symmetry and energy difference ∆ between the states fns2 and (fn−1s2d1)
in eV for PBE0 and PBE for all lanthanides (∆ > 0 means a preference of the fns2 state). In the
columns AP it is noted whether the Aufbau principle is fulfilled (o) or not (x). The first letter refers
to the fns2 state, the second to the (fn−1s2d1) state.

fns2 fn−1s2d1 PBE0 PBE
α β nα-nβ α β nα-nβ
ag au ag au ag au ag au ∆ / eV AP ∆ / eV AP

Ce 16 14 16 12 2 17 13 16 12 2 0.00 oo 0.29 xx
Pr 16 15 16 12 3 17 14 16 12 3 0.83 oo 1.71 xx
Nd 16 16 16 12 4 17 15 16 12 4 1.46 oo 1.95 ox
Pm 16 17 16 12 5 17 16 16 12 5 1.81 oo 2.40 ox
Sm 16 18 16 12 6 17 17 16 12 6 2.83 ox 3.34 ox
Eu 16 19 16 12 7 17 18 16 12 7 3.72 ox 4.15 ox
Gd 16 19 16 13 6 17 19 16 12 8 -0.84 oo 0.33 xx
Tb 16 19 16 14 5 17 19 16 13 7 0.17 oo 1.17 xx
Dy 16 19 16 15 4 17 19 16 14 6 1.15 oo 2.01 ox
Ho 16 19 16 16 3 17 19 16 15 5 1.40 oo 2.37 ox
Er 16 19 16 17 2 17 19 16 16 4 1.36 oo 2.45 ox
Tm 16 19 16 18 1 17 19 16 17 3 2.29 oo 3.23 ox
Yb 16 19 16 19 0 17 19 16 18 2 3.18 ox 4.01 ox
Lu - - - - 17 19 16 19 1 - -o - -o

The preference of the (fn−1s2d1) ground state for Gd is correctly predicted only by the hybrid
functional, meanwhile for Ce, which is the other lanthanide with an (fn−1s2d1) ground state, the
hybrid functional at least predicts equal energies for both states, whereas according to the pure DFT
functional the fns2 state is favourable. Even more problematic for pure functionals is the violation
of the Aufbau principle (i.e. negative HOMO–LUMO gaps): For Ce, Pr, Gd and Tb this happens
for both states, reflecting that the usage of pure DFT functionals at least for some of the lanthanides
obviously is problematic already for the atoms. PBE0 in contrast does a very reasonable job; the
violation of the Aufbau principle for the (fn−1s2d1) state in case of Sm, Eu and Yb is expected, as
for these elements this state is highly de-preferred over the fns2 state.
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3.2 Ln(III) compounds

In most Ln compounds the lanthanide adopts the (formal) oxidation state +III. As an example,
we calculated all LnH3 compounds in planar structure assuming D3h symmetry. For this point
group, the seven f orbitals transform as a1

′ ⊕ a2
′ ⊕ a2

′′ ⊕ e′
⊕

e′′ and the three Ln-H bonds
as a1

′ ⊕ e′ (thus, a mixture of f orbitals and bonds cannot be forbidden by symmetry). We have
chosen the f occupation that yields the lowest energy (second column in Table 2) and optimized
the Ln-H distance. For the optimized structure we list the average orbital energy of the a1

′ ⊕ e′

orbitals representing mainly the bonds, ϵ(bonds), and that of the orbitals mainly containing the Ln(f)
electrons, ϵ(f), further the total f occupation, n(f) and the f contribution to the bond orbitals, nb(f),
obtained by a Mulliken analysis. This was done for PBE0 and PBE. For PBE0, the Ln(f) orbitals
are energetically well separated from the bond orbitals (Ce is an exception) and the calculated f
occupation is always close to n-1 (also for Ce), i.e. there are only very small contributions of Ln(f)
to the bond. The Aufbau principle is fulfilled throughout. Everything meets the expectations. This
is by far not the case for PBE. For Ce to Pm the f orbitals are even higher in energy than the bond
orbitals and also for the subsequent elements the energetic separation is not large (except for Lu).
Consequently, one observes a relatively large mixing of Ln(f) orbitals and bond orbitals, and often
the Aufbau principle is not fulfilled. It is obvious that pure DFT functionals are not well suited for
all-electron treatments of lanthanides (with the exception of Lu).

Table 2: The occupation of LnH3 molecules in D3h symmetry is given in the second to sixth column,
“1” means half-occupied, “2” means fully occupied. ϵ(bonds) is the average orbital energy in eV
of the a1

′ ⊕ e′ orbitals representing the bonds, and ϵ(f) that of the orbitals containing the Ln(f)
electrons. N(f) is the total f occupation, n(f) and the f contribution to the bond orbitals, nb(f),
obtained by a Mulliken analysis. In the column AP it is noted whether the Aufbau principle is
fulfilled (o) or not (x). Both data for PBE and PBE0 refer to structure parameters obtained with
PBE (X2C, x2c-TZVPall bases).

occupation PBE0 PBE
a1

′ a2
′ a2

′′ e′ e′′ ϵ(f) ϵ(bonds) n(f) nb(f) AP ϵ(f) ϵ(bonds) n(f) nb(f) AP
Ce 0 0 1 0 0 -6.71 -6.97 1.16 0.16 o -3.74 -5.77 1.19 0.24 x
Pr 0 1 1 0 0 -8.19 -6.99 2.17 0.18 o -4.71 -5.78 2.27 0.38 o
Nd 0 0 1 0 1 -8.99 -7.08 3.20 0.20 o -5.09 -5.85 3.34 0.37 o
Pm 0 1 1 0 1 -9.98 -7.10 4.22 0.22 o -5.42 -5.87 4.43 0.47 o
Sm 0 1 0 1 1 -11.09 -7.16 5.16 0.18 o -6.67 -5.90 5.34 0.46 x
Eu 0 1 1 1 1 -10.89 -7.20 6.29 0.30 o -6.34 -5.93 6.47 0.76 x
Gd 1 1 1 1 1 -13.41 -7.30 7.05 0.07 o -9.31 -6.07 7.14 0.20 o
Tb 1 1 2 1 1 -13.07 -7.38 8.05 0.06 o -8.80 -6.14 8.17 0.21 x
Dy 1 2 2 1 1 -13.00 -7.40 9.05 0.07 o -8.10 -6.14 9.25 0.32 o
Ho 1 1 2 1 2 -12.77 -7.49 10.07 0.08 o -7.70 -6.20 10.28 0.33 x
Er 1 2 2 1 2 -12.83 -7.51 11.08 0.09 o -7.08 -6.22 11.37 0.49 o
Tm 1 2 1 2 2 -13.14 -7.58 12.04 0.05 o -8.16 -6.27 12.22 0.32 x
Yb 1 2 2 2 2 -12.92 -7.64 13.06 0.08 o -7.04 -6.27 13.36 0.76 x
Lu 2 2 2 2 2 -13.45 -7.70 14.00 0.03 o -9.96 -6.48 13.99 0.05 o

As long as one is sure about the f occupation, effective core potentials that cover the electrons in
the f shell are a highly attractive alternative to all-electron relativistic treatments, at least as long
as one is not specifically interested in the f electrons. In the course of the CRC we integrated these
so-called large-core ECPs[16],[22] in the library of our program suite Turbomole, named those for
the fn−1 occupation “lcecp-1”, and designed and optimized basis sets in the sense of our system of
error-balanced basis sets, named lcecp-1-SVP, lcecp-1-TZVP and lcecp-1-QZVP.[17]
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Table 3: Ln-H distances of LnH3 compounds (in pm) calculated in D3h symmetry with the all-
electron scalar relativistic X2C method with corresponding basis sets x2c-TZVPall at PBE0 level
and with large-core ECPs for fn−1 occupations, lcecp-1, and corresponding newly designed and
optimized basis sets lcecp-1-TZVP at levels PBE0 and PBE.

X2C/TZVP/PBE0 Lcecp-1/TZVP/PBE0 Lcecp-1/TZVP/PBE
Ce 207.44 209.19 209.61
Pr 205.57 207.64 208.08
Nd 204.22 206.18 206.62
Pm 203.23 205.27 205.67
Sm 202.83 204.23 204.63
Eu 203.76 203.12 203.50
Gd 200.97 202.16 202.54
Tb 199.58 201.09 201.47
Dy 198.57 200.18 200.55
Ho 197.31 199.21 199.60
Er 196.56 198.26 198.66
Tm 195.98 197.43 197.84
Yb 194.97 196.49 196.91
Lu 194.33 196.35 196.77

They are not yet published and thus available only upon request, nevertheless we compare
the structure parameters of LnH3 with all-electron relativistic treatments (see above) and ECP
treatments in Table 3. We observe a consistent difference of ∼2 pm, except for Eu, for which X2C
and lcecp are almost identical. Further, we see excellent agreement between PBE0 and PBE, as the
problematic f electrons no longer are explicitly treated.

3.3 Overall summary and practical hints

As long as one is sure about the f occupation (in particular fn−1) and is not specifically inter-
ested in the f electrons, thus e.g. when structure-optimizing Ln(III) compounds, LCECPs are the
means of choice. Here the highly efficient pure DFT functionals are as good as hybrid function-
als. However, if one is either interested in the f electrons or even in the inner shells or is not sure
about the f occupation, or is interested in reaction or atomization energies (where the f occupation
usually changes), all-electron relativistic treatments are necessary. Recommended basis sets are x2c-
TZVPall, keywords to be added to the control file are $rx2c, $finnuc and $rlocal. The usage of pure
DFT functionals is not recommended for this approach. For the determination of the occupation
one may try Fermi smearing, preferably with a fixed number of electrons, e.g. for a compound with
two Pr atoms in presumed fn−1 states. For this, one needs to add the keyword $fermi with default
values and nue=4 for the number of unpaired electros (but you can also try other values, sometimes
this yields better results).

4 Calculation of HFC constants on Lanthanide complexes

Open-shell Ln compounds exhibit magnetic properties, which can be investigated by electron para-
magnetic resonance (EPR) spectroscopy. EPR spectra are generally interpreted with the help of
spectroscopic parameters, like the hyperfine-coupling (HFC) tensor A and the g-tensor.[23] These
tensors can be calculated using quantum-chemical methods, which is subject of research for quite a
while now (see e.g. Ref. [24] as an early overview). Within the framework of DFT, a prerequisite
for these kinds of calculations are converged molecular orbitals. The focus on this section lies on
the HFC tensor and its isotropic HFC constant, as the calculation of this property, especially of the
HFC constant, works quite reliably in certain cases. Details on the calculation of EPR properties
with Turbomole can be found in chapter 18 of the Turbomole manual for version 7.8.[1]
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The HFC tensor for the nucleus N AN describes the interaction between the nuclear spin of
nucleus N I⃗N and the electronic spin S⃗ in the HFC Hamiltonian

ĤHFC
N = I⃗N AN S⃗ . (21)

The isotropic HFC constant is then calculated out of the tensor via

Aiso
N =

1

3
Tr(AN ) =

1

3
(AN,xx +AN,yy +AN,zz) . (22)

Within the framework of DFT, there are several ways of calculating the HFC tensor, depending on
the way scalar relativistic effects and spin–orbit coupling are treated. ECPs should not be chosen
for the calculation, as the electrons close to the nucleus play an important role for the HFC. For
lanthanides, a complete neglect of relativistic effects is not advisable either. Within Turbomole,
an implementation for a two-component (2c) calculation of the HFC tensor in the framework of
exact two-component (X2C) theory is available.[25] However, using a one-component (1c) approach
within X2C (with[26] or without[27] consideration of a spin–orbit perturbation) for the calculation of
the HFC is more easy to apply for general users, computationally more efficient, and often sufficient.

There are several contributions to the HFC tensor, which are often discussed separately. However,
they can only really be separated within a non-relativistic framework, which is why in the following
non-relativistic expressions are given (see e.g. Ref. [28]). For the relativistic expressions within X2C,
see refs. [25]–[27]. The equations are given in atomic units and assume point nuclear charges.

The first contribution to the HFC tensor is the isotropic Fermi contact contribution, given by

AFC,iso
N =

4π

3c2
geµBgNµN

S

∑
µ,ν

Pα−β
µν ⟨ϕµ| δ(r⃗N ) |ϕν⟩ . (23)

Here, c is the speed of light, ge is the g-factor of the free electron, µB is the Bohr magneton, gN is
the g-factor of the respective nuclear spin, µN is the nuclear magneton, ϕµ are basis functions, Pα−β

µν

is the excess spin-density matrix, δ(r⃗N ) is the Dirac delta function, and r⃗N is the position vector of
the electron relative to the nucleus N . The summation on the right side of the equation gives the
excess spin-density ρα−β at the nuclear position. In other words, the FC contribution depends on
the excess spin-density at the nucleus and becomes zero, if no excess spin-density is found at the
nucleus.

The second contribution is the spin–dipolar (SD) term, which describes the dipole–dipole inter-
action between the electronic and the nuclear spin. It is given by

ASD
N,uv =

1

2c2
geµBgNµN

S

∑
µ,ν

Pα−β
µν ⟨ϕµ|

3rN,urN,v − r 2
Nδuv

r 5
N

|ϕν⟩ , (24)

where u, v are Cartesian components and rN is the distance between the electron and nucleus N .
The SD contribution is completely anisotropic and does not contribute to Aiso

N . This is why Aiso
N and

AFC,iso
N are assumed to be the same in cases where spin–orbit coupling is not considered. In scalar

relativistic X2C calculations, i.e. under neglect of spin–orbit coupling, the FC and SD contributions
appear in a coupled form and are obtained separately within the non-relativistic limit.

Spin–orbit coupling can be treated self-consistently within a 2c framework or perturbatively in a
scalar relativistic or non-relativistic framework. The non-relativisitc paramagnetic spin–orbit (PSO)
term, which is the result of the perturbative treatment, is given by

APSO
N,uv =

1

c2
geµBgNµN

S

∑
µ,ν

Pα−β(v)
µν ⟨ϕµ|

(r⃗N × ˆ⃗p )u
r3N

|ϕν⟩ , (25)

where P
α−β(v)
µν is the perturbed excess spin-density matrix with respect to a spin–orbit perturbation

in the Cartesian v direction and ˆ⃗p is the momentum operator. The PSO term might give isotropic
and anisotropic contributions to the whole HFC tensor. Therefore, Aiso

N and AFC,iso
N cannot be

assumed to be completely the same if spin–orbit coupling is considered.
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When considering the results of an HFC tensor calculation, often only the isotropic HFC con-
stant Aiso

N or the three principal components, AN,11, AN,22, and AN,33 are discussed. The principal
components are obtained either by aligning the molecule with its principal axes of inertia, so that
the calculated HFC tensor is diagonal, or by diagonalizing the resulting HFC tensor. Within Tur-
bomole, the diagonalization of the tensor is just done with the symmetric part of the total HFC
tensor, as the antisymmetric part is usually negligible for the diagonalization. In order to avoid this
small error, the molecule can be aligned with its principal axes of inertia within the define envi-
ronment of Turbomole. Note that a good agreement with experiment for Aiso

N may not necessarily
lead to the same quality of agreement for the principal components, as error cancellation may occur.

The calculation of HFC constants on lanthanide compounds with the spin–orbit perturbation
approach is reliable—for up to now considered cases—if a) the unpaired electrons are mainly located
on the lanthanide and b) the unpaired electrons are mostly of s- and d- (and not f-) character. This
results in an applicability mostly for single-center La(II) and Lu(II) complexes with one unpaired
electron. For other cases, a simple 1c black-box DFT approach might not be sufficient for the
calculation.

As an example, calculated and experimental results for the HFC constants of three lanthanide
single-molecule magnets, which are novel candidates for molecular qubits and are depicted in Fig-
ure 1, are shown in Figure 2. These complexes were studied experimentally in Ref. [29]. The
calculations are taken from Ref. [26]. It can be seen that good agreement with the experimental
values is obtained and that even a scalar relativistic approach would be sufficient in this case.

Note that calculations for the EPR g-tensor are also available within Turbomole, both with a
perturbative and a 2c approach (see chapter 18 of the Turbomole manual[1] for details). However,
the errors are generally a bit larger and a 2c approach is generally recommendable, as the impact of
spin–orbit coupling on the g-tensor is larger than on the HFC tensor.

(a) (b) (c)

Figure 1: Depiction of (a) [La(OAr*)3]
−, (b) [Lu(NR2)3]

−, (c) [Lu(OAr*)3]
− (OAr* = 2,6-Ad2-4-

tBu-C6H2O, with Ad = adamantyl and tBu = tert-butyl, R = SiMe3). White: H, grey: C, blue: N,
red: O, brown: Si, light blue: La, green: Lu.
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Figure 2: Comparison between calculated and experimental isotropic HFC constants for
[La(OAr*)3]

−, [Lu(NR2)3]
−, and [Lu(OAr*)3]

−. SR: scalar relativistic X2C approach, SOPT: per-
turbative treatment of spin–orbit coupling within X2C, 2cSO: 2c X2C approach, Expt.: experimental
values. Note that the experimental uncertainty amounts to 25 MHz for [La(OAr*)3]

− and to 50 MHz
for the other two complexes. For the calculations, the x2c-TZVPall-2c basis set[21] was used for the
central Ln atom, while x2c-SVPall-2c[21] was used for the light atoms. The ωB97X-D functional[30]

was employed.

5 Accurate calculations of atomic spectroscopic properties
using GRASP2018

As previously discussed, non-negligible relativistic contributions arise within the regime of lan-
thanoids. The investigation of spectroscopic properties of lanthanoid ions consequently require
explicit relativistic treatment as well as an approach accounting for the large contribution of the
electron correlation. The program package GRASP2018 provides the necessary framework with a four-
component approach in theory and additional quantum electrodynamics (QED) corrections, allowing
accurate predictions of energy levels and transition strengths. Additionally, crystal field calculations
are available as well.
The correct usage of GRASP2018 is non-trivial due to its vast options regarding the choice of the
active space. This article aims to provide guidelines for an informed usage with the ultimate goal to
obtain accurate and physical meaningful results. One should refer to the manual if a more in-depth
description for the user prompts is desired. The manual can be found on the GitHub site of the
CompAs group: https://github.com/compas/grasp/releases/tag/2018-12-03.
Further information regarding mathematical expressions are provided in Ref. [31] and Ref. [32] for
additional insights to the computational strategies as presented in this article.

5.1 Brief theoretical background

The required level of theory has to account for spin–orbit coupling that results as the magnetic mo-
mentum of an electron interacting with the effective magnetic field that results from the electronic
motion around the atomic core.[33] The magnitude of the spin–orbit coupling scales with Z4[33] and
surpasses the coulombic interaction for heavy atoms. Commonly, three regimes are used to describe
the magnitude of the spin–orbit coupling:[34]
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1. weak: ĤC >> ĤSO

The spin–orbit coupling is orders of magnitude weaker than the coulombic force. L and S are
good quantum numbers and the Russell–Saunders/LSJ coupling can be applied.

2. intermediate: ĤSO ≈ ĤC

The spin–orbit coupling and coulombic force are of similar order of magnitude. Commonly,
Russel–Saunders coupling is employed. However, the 2S+1L terms are no longer degenerate
and form 2S+1LJ multipletts. Additionally, the seniority quantum number ν is introduced to
differentiate between terms with the same S and L quantum number 2S+1LJν.

3. strong: ĤC << ĤSO

The spin–orbit coupling is orders of magnitude stronger than the coulombic force as it is the
case for e.g. heavy elements. L and S are no longer good quantum numbers, therefore the jj
coupling has to be applied.

Lanthanoids fall into the regime of intermediate coupling.[34] As a consequence, one needs to describe
the terms and energy level with the seniority quantum number ν,[31] as e.g. for the first excited state
of Eu3+ that is 5D3J.

[35] Additionally, fine-structure splitting arises leading to non-degenerate shells
of different quantum number j, e.g. 2p1/2 being energetically lower than 2p3/2 as shown in Figure

3.[36] Therefore, calculations with GRASP2018 are carried out by applying the jj coupling scheme.
The energy levels are transformed to the easier comprehensible LSJ coupling only at the end of the
calculations.

1s

2s 2p

3s 3p 3d

1s1/2

2s1/22p1/2

2p3/2

3s1/23p1/2
3p3/2 3d3/2

3d5/2

E

Schrödinger H-Atom Dirac H-Atom

Figure 3: Qualitative spectrum of the hydrogen atom from the Schrödinger and Dirac approach.[36]

GRASP2018 additionally provides QED corrections. These corrections do not require additional
computation time and resources and are advised to be always applied, even though the corrections
are usually in the order of up to 2 cm−1. Available QED corrections include transverse photon inter-
action, vacuum polarization, self-energy, normal and specific mass shift.[31] Therefore, all significant
corrections of lower order are included, resulting in an employed Dirac–Coulomb–Breit Hamilto-
nian[31] with QED corrections that provides are highly accurate level of theory:

ĤDCB+QED = ĤDC + ĤTP︸ ︷︷ ︸
ĤTP≃ĤB=ĤDCB

+ĤVP + ĤSE (26)

GRASP2018 uses spectroscopic notation to label the one-electron functions as shown in Table 4.[31]

The electronic wave function Ψ is approximated by GRASP2018 as Atomic State Function (ASF) by
linear combination of Configuration State Functions (CSF) Φ and expansion coefficients cΓJi :[31]

Ψ =

NCSF∑
i

cΓJi · Φi (27)
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s p- p d- d f- f . . .
s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 . . .

l 0 1 1 2 2 3 3 . . .
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2 . . .
κ -1 1 -2 2 -3 3 -4 . . .

Table 4: Spectroscopic notation (upper line) of the relativistic orbitals (lower line) and their corre-
sponding quantum numbers l, j, κ.

The CSFs are constructed by another linear combination of Slater determinants ΨSD
k and result by

angular momentum coupling of orbitals in a certain configuration. Consequently, the number of
CSFs is dependent on the configuration.[31]

Φi =
∑
k

Bki ·
∣∣ΨSD

k

〉
(28)

5.2 How to use GRASP2018

rnucleus

atomic properties

rcsfgenerate

configuration
& active space

rangular

radial integration

rwfnestimate

start guess
for wavefunction

rmcdhf

optimization of
the wavefunction

rci

CI calculation

jj2lsj

transformation in
LSJ coupling

rlevels

calculation of
energy levels

rtransition

E1, E1, M1 & M2 transitions
and transition strengths

CF Hamiltonian

crystal field calculations

Figure 4: Workflow to calculate energy levels using, transition strengths and perform crystal field
calculations with GRASP2018.[37]

A typical workflow with GRASP2018 is depicted in Figure 4 as the program package uses separate
modules for each task.[38]

The calculation starts by providing the atomic properties, configuration and active space. The
choice on the appropriate configurations and active space (orbital space, order of excitation) heavily
influence the required computation time and accuracy:

1. Configuration

(a) multi reference vs. single reference
One has the option to provide only one configuration (single reference) or several config-
urations of the same parity (multi reference). Configurations of even and odd parities do
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not influence each other[38] and only account to energy levels of the same parity.
e.g. The configuration 4f6 of Sm2+ is an even configuration and results in the even energy
levels 7F and 5D3. 4f55d1 is an odd configuration with several odd energy levels like
7H◦.[35]

It is highly depending on the system if a multireference approach is required. Hence,
it is advised to perform explorativ, cheaper calculations with single reference and differ-
ent multi reference approaches at the beginning. The results of these calculations should
be compared with each other and, if available, with experimental data before approaching
accurate and more expensive calculations.
e.g. The even ground state 7F and first excited state 5D3 of Sm2+ are best calculated with
a single reference approach by using the configuration 4f6. Additional even configurations
like 4f45d2 occur around 100 000 cm−1 and upwards, therefore do not influence the lower
lying states.

(b) Correlation
When providing a configuration, the user has to decide whether an orbital is active,
inactive or a core orbital. In most cases, inactive and core orbitals have the same effect
by them being not used to generate CSFs.
Correlation arises once the number of electrons in active orbitals is two or higher. Three
different types of correlation results, depending if the interacting electrons populate a
core or valence orbital:[32] valence–valence, core–valence and core–core correlation. It is
important for a balanced calculation to account for all three types of correlation by using
active core and valence orbitals.

2. Orbital space
The orbital space consists of the core, valence and empty virtual orbitals. Adding virtual
orbitals increases the number of possible excitations. It is advised to at least add one layer of
virtual orbitals, e.g. 6s, 6p, 5d, 5f,5g for Sm2+.

3. Order of excitation
Excitations are referred as Singles (S) for exciting one electron to an energetically higher
orbital, Doubles (D) for exciting two electrons, Triples (T) for exciting three electrons and so
forth. By setting the number of excitations to 2 one allows Singles and Doubles excitation
(SD). It is advised to not solely use Singles excitation since these do not provide improvements
with larger active spaces (see for further reasoning Brillouin’s theorem[39]). Hence, at least SD
excitations are advised.

More active orbitals, an larger orbital space and higher orders of excitation result in a larger amount
of CSFs and therefore increase the cost of the calculation. It might be helpful to explore the limits
of every parameter and determine the most influential parts of the active space. This can be done
by observing the convergence behavior of the parameter.
e.g. Increasing the order of excitation for Sm2+ reaches convergence once quadruple excitations are
applied. However, triples as well as quadruples excitation result in significantly smaller changes than
doubles excitation and therefore singles doubles (SD) excitation is sufficiently.

After providing the desired configurations and active space, the calculation continues with the radial
integration. The resulting data is written onto the disk. Larger numbers of CSFs may result in a
significant amount of required disk space and higher computation time.

Afterwards, a start guess for the wavefunction is needed. Such a start guess can be set up by
using the hf module to obtain Hartree–Fock orbitals (only works for s, p and d orbitals), recycling
an already existing wavefunction rwfn.out from another calculation as well as by choosing the op-
tions 2, 3 or 4 within the modules options.
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The concluding optimization with rmcdhf should usually be performed with the given default set-
tings. If a larger orbital space is desired, then the virtual orbitals should be gradually added as
layers, each layer should be optimized before adding another layer and the lower layers should not
be reoptimizied when perfoming the optimization for higher layers. Elsewise, problems with conver-
gence will arise.
e.g. An orbital space of 7s, 7p, 6d, 6f, 6g is wanted for Sm2+: first 5s, 5p, 4d, 4f are added and
all orbitals are optimized; the resulting wavefunction is reused as a start guess, the orbitals 6s, 6p
are added and only 6s, 6p are optimized; the wavefunction is reused again to gradually add 5d, 5f,
7s, 7p, 6d, 6f and 6g. Orbitals with higher angular momentum, like 5d and 5f, might be added
indiviually due to convergence problems.

It is advised to use all given QED corrections for the CI calculation with rci. Using jj2lsj

and rlevels will provide the results in the comprehensible LSJ coupling.
Afterwards, allowed E1, E2, M1 and M2 transitions and their transition strengths can be calculated
using the module rtransition.

Crystal Field Calculations
Although no information are provided within the manual, an additional module for crystal field
calculations is available under: https://github.com/compas/cf_hamiltonian. A detailed expla-
nation can be found in Ref. [40] which is also available under https://github.com/compas/cf_

hamiltonian/tree/main/docs.
Prepare the input file Crystaldata which contains the x, y, z position and the charge of the atoms.
The file has to be created by the user themselves.

Tm(1) Br(3) SYMMETRY = NO 4 1.00 CART The first line of the file contains:
name of the crystal
symmetry, always set to NO

total number of atoms
scaling factor for the coordinates (here 1.00

character type of the coordinates (here cartesian)

0.000000E+00 0.000000E+00 1.000000E+00 3.000000E+00 Second line contains:
x, y, z positions and charge of the first atom (here Tm3+)

2.581000E+00 0.000000E+00 1.000000E+00 -1.000000E+00 x, y, z positions and charge of the second atom (here Br-)
...

Table 5: Structure of the Crystaldata file required to run CF Hamiltonian.

Use the command CF Halimtonian to start the module. The resulting Stark level splitting is listed
in the .cCF-Hamil file.
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