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"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better 

make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look 

so easy." 

— Richard Feynman 

What is a Qubit? 

A qubit, or quantum bit, is the fundamental unit of quantum information. Unlike a classical 

bit, which can be either 0 or 1, a qubit can exist in a state that is a superposition of both 0 and 

1. This property allows quantum systems to process information in ways that classical systems 

cannot. 

State Representation 

A qubit is mathematically represented by a vector in a two-dimensional Hilbert space. The 

canonical basis states of this space are denoted by |0⟩ and |1⟩, analogous to the classical bits 

0 and 1. However, a qubit can exist in any superposition of these states: 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ ⟩ 

where α\alphaα and β\betaβ are complex numbers satisfying the normalization condition 

|𝛼|2  + |𝛽|2 = 1 

Density Matrix Representation 

The density matrix formalism proves useful in representing an ensemble of qubit realizations, 

providing an object that displays the ensemble's average dynamics. Given an operator 𝐴 and 

an ensemble of states {|𝜙⟩} and a pure state |𝜓⟩ with 𝜌 and 𝜎 their respective density 

matrices, we have: 

E[⟨A⟩ϕ] = Tr(𝐴ρ)     and     E[|⟨𝜓|𝜙⟩|2] = ⟨ρ⟩ψ = Tr(σρ) 

where 𝐸[⋅] is the average over the realizations.  
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Therefore, the density matrix of a qubit takes the form: 

𝜌 = (
𝜌00 𝜌02

𝜌10 𝜌11
) 

where 𝜌00 + 𝜌11 = 1 and 𝜌01 = 𝜌10. For a pure state, 𝜌00 = |𝛼|2, 𝜌11 = |𝛽|2, and 𝜌01 = 𝛼∗𝛽. 

Bloch Sphere Representation 

The state of a qubit can also be visualized on the Bloch sphere, where every point on the 

surface of a unit sphere represents a possible state of the qubit. The north and south poles of 

the sphere correspond to the states |0⟩ and |1⟩, respectively, while any other point on the 

sphere represents a superposition of these states. The Bloch sphere is a powerful tool for 

visualizing the state space of a qubit and the effect of quantum gates and quantum channels 

in general. 

Example of Bloch Sphere Representation, for the represented state 𝜃 = 𝜙 =
𝜋

3
. 

There are multiple ways of defining the mapping of a quantum state to the Bloch sphere. 

1. From 𝝍: The quantum state |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ can be mapped onto the Bloch sphere 

by expressing the state vector's coefficients in terms of spherical coordinates: 

α  =   cos (
θ

2
),   𝛽 = 𝑒𝑖𝜙𝑠𝑖𝑛 (

𝜃

2
), 

where 𝜃 and 𝜙 are the polar and azimuthal angles, respectively. 
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2. Using 𝝈𝒙, 𝝈𝒚 and 𝝈𝒛 : These Pauli matrices play a crucial role in mapping quantum 

states onto the Bloch sphere. They are defined as follows: 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) ,  𝜎𝑧 = (
1 0
0 −1

) 

The expectation values of these matrices with respect to the state ρ\rhoρ determine the 

coordinates on the Bloch sphere. The components of the Bloch vector 𝑟 = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧) are given 

by: 

𝑟𝑥 = 𝑇𝑟(𝜌𝜎𝑥) = ⟨𝜎𝑥⟩𝜓,   𝑟𝑦 = 𝑇𝑟(𝜌𝜎𝑦) = ⟨𝜎𝑦⟩
𝜓

   𝑟𝑧 = 𝑇𝑟(𝜌𝜎𝑧) = ⟨𝜎𝑧⟩𝜓 

3. Link with 𝝆: The density matrix of a state whose Bloch vector is 𝑟 = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) is: 

𝜌 =
1

2
(𝐼 + 𝑟𝑥𝜎𝑥 + 𝑟𝑦𝜎𝑦 + 𝑟𝑧𝜎𝑧) 

One can see that a pure state is necessarily on the surface of the Bloch sphere, while a density 

matrix can also represent states inside the Bloch ball. 

Entanglement 

One of the most powerful features of qubits is their ability to become entangled with each 

other. Entanglement is a quantum phenomenon in which the states of two or more qubits 

become so interdependent that the state of each qubit cannot be described independently of 

the state of the others. This property is the basis for many quantum algorithms and protocols, 

including quantum teleportation and quantum cryptography. 

The phenomenon of interest related to quantum entanglement in this context is the 

exponential expansion of the Hilbert space. Analogous to how classical bits exist in one of two 

states—either 0 or 1—and a qubit may inhabit a complex superposition, representing a 

combination of both |0⟩ and |1⟩. For a system of 𝑁 classical bits, the total number of possible 

configurations is 2𝑁, and a system of 𝑁 qubits can exist in a superposition encompassing all 

2𝑁 potential states simultaneously. 

One can discriminate between separable and non-separable (or entangled) states. If a 𝑁-

qubits state |𝜓𝑁⟩ can be represented as: 

|𝜓𝑁⟩  = ⨂𝑘=0
𝑁−1|𝜓𝑘⟩ 

with |𝜓𝑘⟩ being a pure state of qubit 𝑘, it is said to be separable. Any state that cannot be put 

in this form is said to be non-separable. 



FOR INTERNAL USE ONLY 

4 

 

For example, 
1

2
(|000⟩ − |001⟩ + |100⟩ − |101⟩) = √

1

2
(|0⟩ + |1⟩) ⊗ |0⟩ ⊗ √

1

2
(|0⟩ − |1⟩) is 

a separable state. While
1

2
(|000⟩ + |001⟩ + |100⟩ − |101⟩) is not. 

A noteworthy example is the non-separable GHZ state: 

|𝐺𝐻𝑍⟩ =
1

2
(⨂𝑘=0

𝑁−1|0⟩ + ⨂𝑘=0
𝑁−1|1⟩) 

the GHZ state is sometimes referred to as the maximally entangled state. 

Quantum Gates 

Quantum gates are essential tools in quantum information processing, functioning as 

quantum analogues of classical logic gates. They perform operations on qubits and qudits, 

enabling the manipulation of quantum states, which is foundational for quantum computing 

and related technologies. 

Characteristics of Quantum Gates 

Quantum gates are represented by unitary operators, ensuring that all operations are 

reversible and preserve the normalization of quantum states. These operators conform to the 

unitarity condition 𝑈𝑈† = 𝑈†𝑈 = 𝐼, where 𝐼 is the identity matrix. 

Types of Quantum Gates 

Quantum gates can be broadly categorized based on their operation either on single qubits or 

on multiple qubits: 

• Single-Qubit Gates: These gates operate on individual qubits and include the Pauli 

gates (X, Y, Z), the Hadamard gate, and the phase shift gates (e.g., S and T gates). These 

gates typically act as rotations on the Bloch sphere, transforming the state of a single 

qubit. 

• Multi-Qubit Gates: These gates operate across multiple qubits, creating 

entanglements and enabling more complex operations. The most notable among these 

is the Controlled NOT (CNOT) gate. Other examples include the SWAP gate, which 

exchanges the states of two qubits, and the Toffoli gate, an extension of the CNOT gate 

that operates on three qubits. 

Implementing Quantum Gates 

To implement a quantum gate, we apply the corresponding unitary matrix to the state vector 

or density matrix of the qubits. For example, if a quantum gate represented by the unitary 
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operator 𝑈 acts on a qubit initially in the state |𝜓⟩, the new state of the qubit is given by 𝑈|𝜓⟩. 

In terms of density matrices, the transformation is represented as 𝑈𝜌𝑈†, where 𝜌 is the 

density matrix of the qubit state. 

A quantum gate 𝑈 is the time-evolution operator of that qubit during a certain gate time 𝑡𝑔. 

If the gate starts acting on the qubit at time 𝑡0, we have: 

𝑈 = 𝑇𝑒𝑥𝑝(−𝑖ℏ ∫ 𝐻(𝜏)𝑑𝜏

𝑡0+𝑡𝑔

𝑡0

)  

where 𝐻 is the Hamiltonian acting on the system and 𝑇𝑒𝑥𝑝 is the time ordered time 

exponential. 

Physical Realization 

Implementing quantum gates in physical systems requires precise control over quantum 

interactions and the environment. Technologies such as superconducting qubits, trapped ions, 

and photonic systems are commonly used. Each technology offers different advantages and 

challenges, particularly in relation to gate fidelity, coherence times, and operational speeds. 

A physical qubit realization is characterized by its Hamiltonian, which is generally composed 

of 𝐻_0 (the free evolution or drift Hamiltonian) and {𝐻𝑘}𝑘 (an ensemble of control 

Hamiltonians). The total Hamiltonian that is plugged in is: 

𝐻(𝜏) = 𝐻0 + ∑ 𝑢𝑘(𝜏)𝐻𝑘

𝑘

 

with 𝑢𝑘(𝜏) being the control amplitudes of the Hamiltonian 𝐻𝑘. 

To physically apply a certain gate on qubits, it is therefore a matter of finding the right control 

amplitudes given the physical constraints of the particular realization. 

Quantum Algorithms 

A quantum algorithm is a step-by-step procedure in which each step is implemented using a 

quantum gate. These algorithms are designed to operate within the quantum circuit model 

and exploit the unique properties of quantum states to perform computations. 

Prominent Quantum Algorithms 
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Shor's Algorithm: One of the most famous quantum algorithms, Shor's algorithm, factors large 

integers exponentially faster than the best-known classical algorithms. This capability has 

significant implications for cryptography. 

Grover's Algorithm: Grover's algorithm provides a quadratic speed-up for unstructured search 

problems compared to their classical counterparts. This algorithm is particularly useful for 

searching databases and solving optimization problems where no specific structure is 

exploitable by classical algorithms. 

What is a Qudit? 

A qudit generalizes the concept of a qubit to higher dimensions. While a qubit represents 

quantum information using two levels (typically denoted |0⟩ and |1⟩), a qudit extends this idea 

to 𝑑 levels, where 𝑑 can be any integer greater than 2. These levels are represented by the 

states |0⟩, |1⟩, |2⟩, . . . , |𝑑 − 1⟩. 

State Representation 

The state of a qudit is described in a 𝑑-dimensional Hilbert space. A general state of a qudit 

can be represented as: 

|𝜓⟩ = ∑ 𝛼𝑗|𝑗⟩

𝑑−1

𝑗=0

 

where {𝛼𝑗}
𝑗
  are complex coefficients satisfying the normalization condition ∑ |𝛼𝑗|

2𝑑−1
𝑗=0 = 1. 

Density Matrix Representation 

The density matrix for a qudit is a 𝑑 × 𝑑 matrix defined as: 

𝜌 = ∑ 𝜌𝑖𝑗|𝑖⟩⟨𝑗|

𝑑−1

𝑖,𝑗=0

  

with the conditions that 𝜌 is Hermitian (𝜌† = 𝜌), trace-one (𝑇𝑟(𝜌) = 1), and positive semi-

definite. 

Generalized Bloch Representation 

For qubits, the Bloch sphere provides a convenient visualization of the state space. In the case 

of qudits, the concept of the Bloch sphere generalizes to higher dimensions, often visualized 

through the use of generalized Gell-Mann matrices, which are the SU(ddd) analogues to the 
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Pauli matrices of SU(2). Pure states of a qudit lie on a subset of the surface of a (𝑑2 − 1)-

dimensional sphere. 

 

 

Quantum Gates for Qudits 

Quantum gates for qudits extend the unitary operations applicable to qubits. A quantum gate 

that acts on a qudit is a 𝑑 × 𝑑unitary matrix, allowing for a richer set of transformations due 

to the higher dimensionality. 

Advantages of Qudits 

The use of qudits in quantum computing offers several advantages. They provide a more 

compact representation of quantum information, as a single qudit can encode more 

information than a qubit. This compactness can lead to reductions in the number of quantum 

gates and the overall complexity of quantum circuits. Qudits can enhance the resilience of 

quantum information to certain types of errors and may offer advantages in quantum error 

correction. 

Timescales 

In quantum computing, the coherence of qubits—how long they maintain their quantum 

states—is fundamental for performing quantum operations. The timescales 𝑇1, 𝑇2, and 𝑇2
∗ 

represent different aspects of how qubit states decay and dephase over time, directly 

influencing the performance and feasibility of quantum computations.  
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𝑻𝟏: Longitudinal Relaxation 𝑇1 time, often referred to as the longitudinal relaxation time, 

measures the time it takes for a qubit to return to its thermal equilibrium state along the Z-

axis of the Bloch sphere. This process is also known as energy relaxation or spin-lattice 

relaxation, where an ensemble of qubits in an excited state |1⟩ relaxes to the ground state |0⟩ 

on its own in the interaction picture : 

𝐸[|⟨𝜓(0)|𝜓(𝑡)⟩|2] = |⟨1|𝜓(𝑡)⟩|2𝑒−𝑡/𝑇1 

where 𝐸[⋅] is the average of the realizations. 𝑇1. This time is critical for quantum systems, as 

it sets an upper limit on how long computations can run before the qubits lose their energy 

state. 

 

𝑻𝟐: Decoherence Time 𝑇2, or the transverse relaxation time/decoherence time, describes 

how quickly the off-diagonal elements of a qubit's pure state density matrix decay. 𝑇2 reflects 

the loss of quantum coherence due to the dephasing between the states of a qubit: 

|𝜌01(𝑡)| = |𝜌01(0)|𝑒−𝑡/𝑇2  

𝑇2 is generally shorter than 𝑇1 and determines the time window within which the quantum 

gates can operate effectively before coherence is lost. 
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There exists cases with 𝑇_2 > 𝑇_1, but 𝑇2 ≤ 2𝑇1. A system where 𝑇2 = 2𝑇1 is said to be "𝑇1-

limited". And sometimes one can define 
1

𝑇𝜙
=

1

𝑇2
−

1

2𝑇1
 the pure dephasing tim}, that is, the 

supplementary dephasing time that is not due to the longitudinal relaxation. 

𝑻𝟐
∗  : Dephasing Time 𝑇2

∗  (T_2 star) represents the total dephasing time, including all sources 

of noise, not just those intrinsic to the qubit system. It is often shorter than T_2 due to 

additional dephasing effects from environmental instabilities. By changing the reference 

frame to the interaction picture and defining |±⟩: =
1

2
(|0⟩ ± |1⟩) , and initializing the system 

in the state |+⟩ and letting it evolve, we define: 

𝐸[|⟨𝜓(0)|𝜓(𝑡)⟩|2] = 𝐸[|⟨+|𝜓(𝑡)⟩|2] =
1

2
(1 + 𝑒−𝑡/𝑇2

∗
) 

The difference between 𝑻𝟐 and 𝑻𝟐
∗  might not seem very obvious at first glance, and those two 

are often used interchangeably. It becomes even more confusing when one considers that, if 

𝜌(0) = |+⟩⟨+|: 

|⟨+|𝜓(𝑡)⟩|2 = ⟨𝜌⟩+ =
1

2
(𝜌00 + 𝜌11 + 𝜌10 + 𝜌11) =

1

2
(1 + 𝑒−𝑡/𝑇2) 
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This makes it seem that 𝑇2 = 𝑇2
∗.  

However, let us consider, that in the interaction picture of a unitary evolution, there is a non-

characterised interaction term 𝐻𝐼(𝑡)  =  𝛿(𝑡) |1⟩⟨1| — it can be an external field noise, 

uncalibrated controls, etc.— that varies from one realisation to another, but can be 

represented by a Gaussian noise of variance 2/𝜏. Initialising the state in |+⟩ at time 0, and 

letting it evolve for a time t according to the Schrodinger equation, produces a system in the 

state 
1

√2
(|0 >  + 𝑒𝑥𝑝(−𝑖 ∫ 𝛿(𝑡′)𝑑𝑡′

𝑡

0
 )|1 >). This means that averaging over all the different 

realisations: 

𝐸[|⟨+|𝜓(𝑡)⟩|2]  =
1

2
( 1 +  𝐸 [ 𝑐𝑜𝑠 (∫ 𝛿(𝑡′)𝑑𝑡′

𝑡

0

)]) =
1

2
 ( 1 + 𝑒−

𝑡
𝜏) 

This is then a similar expression as before. 

 

In reality, 𝑇2 represents a type of decoherence that occurs because of non-unitary evolution. 

This means that it arises from interactions not described by the standard quantum mechanical 

framework of Hamiltonians within the system's Hilbert Space. On the other hand, 𝑇2
∗ includes 

everything that 𝑇2 covers, plus an additional dephasing term, similar to the Gaussian noise 

example we just saw. This extra term comes from averaging the effects across a group of 

systems. These systems undergo unitary evolution, meaning that they evolve in a predictable 

quantum manner, but they experience variations due to Gaussian noise or a normally 

distributed variation in their base Hamiltonian settings. 

 

For instance, consider a qubit with two energy levels that are initially degenerate but are split 

due to a longitudinal field that has some noise in its control. Alternatively, imagine a group of 

qubits that are in slightly different environments. In such cases, the dephasing included in T2* 

would account for these variations. 

 

Finally, one could say that the total dephasing time 𝑇2
∗includes: the inhomgeneous dephasing 

time 𝜏, the pure dephasing time 𝑇𝜑 (𝑇2 without the effect of 𝑇1, see discussion in the 𝑇2 

subsection), and the longitudinal relaxation time 𝑇1, as follows: 

1

𝑇2
∗  =

1

𝜏
 +

1

𝑇𝜑
 +

1

2𝑇1
 

These timescales —𝑇1, 𝑇2, and 𝑇2
∗— are essential for designing and evaluating quantum 

circuits, as they directly impact the error rates and practicality of implementing quantum 

algorithms. 𝑇2
∗, as the limiting parameter, is crucial for any qubit system, especially <hen 

studying a physical ensemble of qubits. It sets the operational timescale, beyond which 

quantum computing is unfeasible due to decoherence. Moreover, each one corresponds to a 
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particular type of qubit error, and each of those can be modelled by a specific quantum 

channel, in an open quantum system approach. 

 

 

 


